Deep Learning for Automated Segmentation of Left Ventricle Myocardium and Myocardial Scar From 3-D MR Images

150 150 MaLMIC - Machine Learning in Medical Imaging Consortium

Open Forum on Machine Learning in Cardiac Imaging

Presenter:

Fatemeh Zabihollahy

Abstract:

Deep learning has demonstrated promise for various cardiac imaging applications. However, the performance is usually degraded when the models are trained with small and under-annotated training datasets and tested on previously unseen domains, limiting the potential for broad clinical use. In this talk, Fumin presented his recent work on combining deep learning and machine learning models for cardiac MRI segmentation, where smaller datasets and fewer annotations are required for algorithm training. He also provided examples of integrating the segmentation tools for myocardial infarct heterogeneity quantification in contrast enhancement MRI in the context of MRI-guided cardiac arrhythmia treatment.

Modality:

  • MR

Organ:

  • Cardiac

Disease

  • Heart Disease
  • Stroke and Cardiovascular
Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.