Cardiac Machine Learning – Forum, June 18, 2021

150 150 MaLMIC - Machine Learning in Medical Imaging Consortium

Join the Machine Learning in Medical Imaging Consortium (MaLMIC) for a networking opportunity

Monthly Virtual Forum Series on Zoom

Friday, June 18, 2021
3:30 to 5:30 p.m. EDT

James White, a cardiologist, talked about the clinical perspective followed by two researchers, Fatemeh Zabihollahy and Fumin Guo, described their machine learning research in the area. This was followed by discussion focused on lessons learned, opportunities to collaborate and sharing of resources.

Monthly Virtual Forum Series on Zoom

Friday, June 18, 2021
3:30 to 5:30 p.m. EDT

James White, a cardiologist, talked about the clinical perspective followed by two researchers, Fatemeh Zabihollahy and Fumin Guo, described their machine learning research in the area. This was followed by discussion focused on lessons learned, opportunities to collaborate and sharing of resources.

James White

Clinical applications of machine learning in cardiovascular imaging: from image creation through to patient outcomes

James White, MD
Director, Stephenson Cardiac Imaging Centre, Foothills Medical Centre

Talk summary: Machine learning (ML) has cemented its role in emulating tasks commonly encountered in clinical practice, most visibly those pertaining to image segmentation.  However, the value of ML extends well beyond the replication of tedious image labelling to now include optimization of image reconstruction, assistance of disease classification, and prediction of future cardiovascular events.  In this talk we highlighted emerging trends in the use of ML that are slated to alter the performance, interpretation and clinical use of cardiovascular imaging in the emerging era of personalized medicine.

Fatemeh Zabihollahy

Deep learning for automated segmentation of myocardial scar from 3-D MR images

Fatemeh Zabihollahy, PhD
Postdoctoral Research Fellow, Johns Hopkins University

Talk summary: Cardiovascular disease (CVD) is the leading cause of death worldwide, ischemic heart disease being a dominant contributor. These patients suffer irreversible myocardial scar from ischemia, inherently reducing cardiac function and leading to heart failure. Three-dimensional (3-D) late gadolinium enhancement magnetic resonance (LGE-MR) imaging and T1‐mapping cardiac MR enable non-invasive quantification of myocardial scar at high resolution. Automated segmentation of myocardial scar is critical for the potential clinical translation of this technique given the number of tomographic images acquired. In this talk, Fatemeh presented deep learning- based methods developed for automated segmentation of myocardium and myocardial scar from T1-mapping cardiac MR and 3-D LGE-MRI.

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.