Improving Peproducibility in Machine Learning Research

150 150 MaLMIC - Machine Learning in Medical Imaging Consortium

Open Forum on Reproducibility and Good Practices in Machine Learning Research

Presenter:

Benjamin Haibe-Kains

Abstract:

While biostatistics and machine learning are essential to analyze biomedical data, researchers are facing multiple challenges around research reproducibility and transparency. It is essential for independent researchers to be able to scrutinize and reproduce the results of a study using its materials, and build upon them in future studies.

Computational reproducibility is achievable when the data can easily be shared and the required computational resources are relatively common. However, the complexity of current algorithms and their implementation, the need for specific computer hardware and the use of sensitive biomedical data represent major obstacles in healthy-related research. In this talk, Benjamin described the various aspects of a typical biomedical study that are necessary for reproducibility and the platforms that exist for sharing these materials with the scientific community.

Other:

  • Resource Sharing
  • Reproducibility
Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.