Alzheimer’s and Small Vessel Disease Imaging – Forum, July 16, 2021

150 150 MaLMIC - Machine Learning in Medical Imaging Consortium

Join the Machine Learning in Medical Imaging Consortium (MaLMIC) for a networking opportunity

Monthly Virtual Forum Series on Zoom

Friday, July 16, 2021
3:30 to 5:30 p.m. EDT

Sandra Black, a neurologist, talked about the clinical perspective followed by two researchers, Maged Goubran and Lyndon Boone, describing their machine learning research in the area. This was followed by discussion focused on lessons learned, opportunities to collaborate and sharing of resources.

Monthly Virtual Forum Series on Zoom

Friday, July 16, 2021
3:30 to 5:30 p.m. EDT

Sandra Black, a neurologist, talked about the clinical perspective followed by two researchers, Maged Goubran and Lyndon Boone, describing their machine learning research in the area. This was followed by discussion focused on lessons learned, opportunities to collaborate and sharing of resources.

Sandra E. Black

Reconciling complexity and precision medicine: Can Artificial Intelligence really capture real-world ground truth in the common dementias?

Sandra E Black, MD
Professor, University of Toronto, and Senior Scientist, Sunnybrook Research Institute

Talk summary: The Sunnybrook Dementia study exemplifies research embedded in care, a 25 year venture combining standardized, comprehensive neurocognitive, mood, behaviour and functional measures, with real-world pipelines for MRI volumetrics, developed collaboratively with radiology, medical biophysics, and computer programmers, to map topographies of the common dementias and elucidate cerebral small vessel disease. This provided essential ground truth for developing Computational Neural Networks, turning  hours of labour into minutes of computation that generate quick, reliable structural diagnostics to support personalized treatments and outcome evaluation.

Maged Goubran

Building artificial neural networks for neuroimage analysis: applications in dementia and stroke

Maged Goubran, PhD
Assistant Professor, University of Toronto, and Scientist, Sunnybrook Research Institute

Talk summary: Maged will describe some of the novel ML and computational tools that they are building for neuroscience applications and precision medicine, and their impact in the context of Alzheimer’s disease (AD) and traumatic brain injury (TBI). Maged will specifically present their networks for analyzing structural MRI biomarkers, and highlight how they are improving on existing segmentation methods. He then presented their novel ML pipelines for high-throughput analysis and characterization of neuronal and vascular network alterations in animal models of AD and TBI. Finally, Maged described their recent AI model for predicting subject-specific cognitive decline in preclinical AD.

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.