Natural Language Processing – Forum, October 28, 2022

1024 545 MaLMIC - Machine Learning in Medical Imaging Consortium

Join the Machine Learning in Medical Imaging Consortium (MaLMIC) for an opportunity to network

Natural Language Processing

Friday, October 28, 2022
3:00 to 4:30 p.m. ET

Richard Do, a radiologist, will start the forum with a presentation on natural language processing (NLP) of radiology reports to track metastatic spread. Heidi Hanson, a researcher, will talk about NLP in cancer surveillance. The two presentations will be followed by discussion focused on lessons learned, opportunities to collaborate, and sharing of resources.

Interested in joining? Please contact us.

Natural Language Processing

Friday, October 28, 2022
3:00 to 4:30 p.m. ET

Richard Do, a radiologist, will start the forum with a presentation on natural language processing (NLP) of radiology reports to track metastatic spread. Heidi Hanson, a researcher, will talk about NLP in cancer surveillance. The two presentations will be followed by discussion focused on lessons learned, opportunities to collaborate, and sharing of resources.

Interested in joining? Please contact us.

Insights from Natural Language Processing Applied to Oncologic Radiology Reports

Richard Kinh Gian Do, MD, PhD
Radiologist, Memorial Sloan Kettering Cancer Center

Talk Summary: Radiology reports routinely describe physiologic and pathologic processes, including sites of disease and treatment response in cancer patients. At Memorial Sloan Kettering Cancer Center, over a half million radiology reports are created annually. The development of NLP models is an essential step in helping investigators accurately extract large-scale structured data from such reports. Clinical insights from the initial efforts to catalog the spread of metastatic disease will be discussed.

Real-time Cancer Reporting at Scale: How NCI and DOE are forging a new path for population-level cancer surveillance

Heidi Hanson, PhD
Group Leader, Biostatistics and Multiscale System Modeling, Oak Ridge National Laboratory

Talk summary: Heidi will discuss the NCI-DOE Modeling Outcomes using Surveillance data and Scalable AI for Cancer (MOSSAIC) project. She will give an overview of their approach to translational AI for cancer surveillance and their attempt to modernize national cancer surveillance with deep learning solutions.

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.