Prostate

2022 | Self supervised contrastive learning for digital histopathology.

150 150 MaLMIC - Machine Learning in Medical Imaging Consortium

Short Description: We apply a contrastive self-supervised method to digital histopathology. A large-scale study with 57 histopathology datasets without labels was conducted. Our study focuses on differences between natural-scene and histopathology images. We find combining multiple multi-organ datasets improves task performances. Using more pretraining data has diminishing returns after around 50,000 images.
Modality: Optical/Microscopy
Organ: Prostate, Breast, Colorectal
Disease: Cancer

bottom of publications

150 150 MaLMIC - Machine Learning in Medical Imaging Consortium

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.